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The Laplace transform technique is widely used in engineering. In such applications 
all the physical constants (parameters) of a system are usually known and its precise 
behavior can be calculated. However, in experimental physics, especially solid state 
physics, the situation can be the opposite. Measurements can describe the behavior of a 
system and one wishes to extract its physical parameters. We present here a mathematical 
method which enables one to use the Laplace transform technique for this special 
application. This method, which can be used for a large variety of physical phenomena, 
makes use of the shape of the response of a system as a function of time. We present 
here the mathematical and physical considerations for those cases to which the method 
can be applied. Several examples are worked out to show the correct way to use the 
technique. 

INTRODUCTION 

The Laplace transform technique has a large number of applications in physics 
and engineering [l-3]. It is used mainly for the solution of the differential equations 
describing the physical behavior of a system under certain (given) external con- 
ditions. The applications include, among other topics, electric network theory, 
heat condution problems, mechanics and hydrodynamics of continuous systems, 
and electric transmission lines. 

The limitations of the technique are twofold. The transformability of the 
differential equations describing the system imposes restrictions on the complexity 
of problems that can be solved. The second limitation is the validity of the mathe- 
matical model as a true description of the experiment. The second limitation can 
be checked by making a redundant calculation of the parameters. 

Three steps are involved in the actual solution of a problem. In the first, the 
differential equations of the problem and the initial and boundary conditions 
imposed externally are transformed into the “image” space, that is, the Laplace 
transform is taken for all the equations and functions involved. This step is usually 
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not difficult because the externally enforced conditions are simple functions. 
Published tables of Laplace transforms [4] are quite extensive, enabling one to 
work out this first step easily even for complicated cases. In the second step, the 
equations in the image space are solved for the desired variable. In experimental 
physics, this will be a measureable quantity like temperature in a heat conduction 
problem, or voltage, or current in an electrical problem; etc. We denote by x(p) 
the solution in the image space. The inverse transform of the function x(p) is 
found in the third step, yielding X(t), the solution in real space. It turns out that 
the last step is usually the most complex of the three. In some cases, a straight- 
forward inverse transform can be found using published tables. However, for most 
cases involving real life finite size systems, the solution in the real space is given in 
a form of infinite series which converge under certain conditions, usually for large 
or small values of the time. In these cases, the form of the solution is not adequate 
for a complete and accurate analysis of the experimental results in order to obtain 
the physical parameters of the system. Large computers must be used to find the 
parameters through complicated least-squares fits of the experimental data to the 
complex form of the solution. 

In this paper we present a simple moments method that replaces two complex 
parts in the procedure outlined above. It enables one to drop the third step com- 
pletely and it does not make use of a complicated least-squares fit. The exact form 
of X(t) is not required. The moments X, are estimated from the mathematical 
mode1 as derivatives and integrals of x(p) at p = 0. 

These results are compared to the experimental moments, which are integrals 
of X(i) t”. This comparison gives a simple set of equations for the physical para- 
meters of the system. Usually, the number of useful equations is limited only by 
the accuracy of the experiment (it should be noted that the experimental moments 
are less sensitive to instruments (electronic) noise than any particular point or 
derivative of X(t)). Therefore, in most cases it is possible to get a redundant set of 
equations for the physial parameters. In this way the validity of the whole mathe- 
matical model can be checked through the moments method. The exact estimation 
of X(t) is not needed for finding the moments from the model. However, there are 
some limitations on the existence of X, . In the subsequent sections we will describe 
the practical and correct way to find when the moments X, exist. Several worked 
examples are included. 

1. THE MOMENTS METHOD 

The Laplace transform x(p) of a function X(t) is defined as 

X(p) = Jo= e-“T(t) cft, Real p > C. (1) 
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In this definition we assume that X(t) is defined for t > 0 and that the integral 
appearing in (1) exists for Real p >, C, where C >, 0. x(p) is called the image 
function while X(t) is the original function. Usually this is the time, but Laplace 
transforms can be defined for any variable. In this paper we shall assume that t 
means time and X(t) is also a function of other variables such as distance, angles, 
initial values of the system, etc., and so, therefore, is X(p). In our treatment, 
Z(p) is the image space solution of a measurable quantity X(t) in a physical 
experiment. The outline of the calculation of x(p) in the image space was given in 
the Introduction and we will confine our work to the information that one can 
obtain from X(p) without using the complete form of X(f). 

We define the moments X, for any integers n as 

X,, = Ia X(t) t” dt, -co<n<co. (2) 
0 

We assume that these moments X, exist, at least for some values of n. We now 
apply the general rules of the Laplace transform ([2, pp. 255-2571 or [3, pp. 26-271). 
If 5(Po) exists and p --t p. + 0 through real values, then 

In particular, for p. = Of, and assuming continuity at the origin: 

hi y(p) = jrn Y(t) dt. 
0 

(3) 

(4) 

Applying this result to Y(t) = X(t) tn and Y(t) = X(t) tF for n > 0 we obtain 

x, = 1~2 (-1)” [$$@I, n Z 0, 

X-, = 1~2 rs,” *a* JDa X(p) dp] (n-multiple integral) n > 0. (6) 

We have thus completed the mathematical formulation of the moments method. 
We note that the evaluation of the moments X, using (5) and (6) is usually an 
easy calculation, especially using (5). However, sometimes the computation of the 
multiple integral used in (6) is not straightforward. In these cases, it is sometimes 
easier to calculate the moments numerically using modern numerical inverse 
transformation techniques for X(p). We can also add that (4) can be applied to a 
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wide variety of integrals and derivatives of X(t) if they are defined, and if the 
corresponding Laplace transforms exist. We quote two simple examples: 

and Y(r) = j' x(t) dt, 
0 

s,= (qp, dt = liipX(p) - X(0+); 

j” (j” X(T) dT) dt = iii; X(p). 
0 0 

(7) 

(8) 

In particular, 
$2 Pm = fit -vf). 

It is also shown [3, p. 144; 2, p. 2551 that if lim,,, X(t) exists, 

In an experiment we measure X(t), and therefore the experimental moments 
X, can be computed from (2). Assuming that the moments exist mathematically, 
they can be compared directly with the simple limiting values obtained in (5) 
and (6). This comparison will give a simple set of equations for the physical 
parameters of the system. Sometimes, an electronic measuring system does not 
yield X(t) but rather &C(t)/& and/or ji X(t) dt. The first moments of those functions 
have been exhibited in (7) and (8), respectively. Extension of our method and 
variations can be found using any table of Laplace operations [3, p. 209; 2, p. 2571. 
Another extension is the use of p. + 0 in (3). It will be dealt with in Section 3.1. 

There are two problems to be solved before the algebraic procedure outlined 
above can be utilized. These are: 

(1) the proof that the moments do exist mathematically without having to 
find the exact form of X(t), 

(2) practical ways of tiding the moments. 

We shall give here mathematical restrictions on X(p), and practical and physical 
considerations when, and in which way, the above-mentioned problems can be 
overcome. 

2. MATHEMATICAL CONSIDERATIONS 

We can overcome the two problems mentioned above by finding the limiting 
behavior of X(t) as c -+ 0 and/or t --+ co without the necessity of tiding the 
complete solution. This behavior will permit us to evaluate the moments and to 
probe their existence. 
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2.1. Estimates for the Behavior of X(t) for t -+ co. 

We have two main approaches for estimating X(t) at t -+ cc without a complete 
solution: (1) Series expansion of x(p); (2) The inversion theorem. If X(p) can be 
expanded in a neighborhood of cq, in an absolutely convergent power series with 
arbitrary exponents 

X(P) = f ah - aOP, -iv < A, < A, < ..- < Co, (11) 
?l=O 

then X(t) has the asymptotic expansion for t + co, 

X(t) w e 4 f. gyA,) t-+-l. (12) 

Nonnegative integral exponents A, > 0 do not contribute to X(t) [l/r(--A,) = 01. 
Usually (12) is a complicated expansion. We exhibit it because there are cases 
where the inversion theorem (see below) cannot be applied and we must use this 
expansion to examine the leading term in X(t) as t -+ cc. The simpler approach 
is to use the generally accepted way of finding X(t) analytically from x(p): the 
inversion theorem [2, Sections 29-311. If X(t) has a continuous derivative and 
/ X(t)1 -=c Kect, where K and C are positive constants, then 

X(t) = & ljz J++i” ePtX(p) dp, where y > C, t > 0. 
v-iw 

(13) 

The line integral is usually evaluated by transforming it into a closed contour and 
applying the calculus of residues. If X(p) is a single-valued function of p we com- 
plete the contour by including the line Real p = y and a large circle of radius R 
in the half-plane, not passing through any pole of the integrand. The contour is 
shown in Fig. 1. The integral over this circle vanishes in the limit R + co if 

+ImP 

FIG. 1. The closed contour used for the application of the inversion theorem for a “regular” 
function X@). 
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I w(p)/ < AR-K with R > R, , K > 0, where R, , A’, and C are constants (Jordan’s 
lemma [2, Section 311). Thus, in this limit and using Cauchy’s integral formula, 
.X(t) is the sum of the residues at the poles of the integrand within the contour. 

A function x(p) that can be integrated using the closed contour of Fig. 1 will 
be called “regular.” 

We shall now explain the implications encountered by the mathematical restric- 
tions on a “regular” X(p). We first look at X(t). Mathematically the step and 8 
functions are not included in this treatment. Nevertheless, if a formal treatment of 
them leads to a result capable of physical interpretation, then in practical cases 
the result may be accepted as correct [5, pp. 651. This concept, which is generally 
accepted by mathematicians [2, Section 106; 3, Section 131, removes any real 
a priori limitation on X(t) encountered in physical applications. It has also a 
rigorous basis in distribution theory. 

The limitations imposed by Jordan’s lemma can be checked directly on x(p). 
It turns out that for finite geometry problems [l-3] this restriction is of no impor- 
tance whatsoever. Only for some infinite geometries are the requirements of 
Jordan’s lemma not fulfilled, usually when the term e-ap (CY > 0) appears as a 
multiplier. This point will be clarified in Section 3.1. 

The last mathematical restriction on X(p) is that it has to be single-valued, From 
[5, p. 5351, the only elementary functions that are not single-valued are those 
including values of p for which a quantity raised to a nonintegral power vanishes 
or for which quantity whose logarithm is taken vanishes or becomes infinite. The 
quantity most often encountered in Laplace transform solutions X(p) is 
4 = (up’ + bp + c)lj2 where a, 6, c are positive constants. However, for most 
finite geometry cases, X(q) is a single-valued function of p. To show this, one must 
check to see if I(q) is an even function of q. 

We proceed now to examine X(t) obtained by the inversion theorem using the 
contour of Fig. 1. Let p,, be the nth pole of X(p). We have three possibilities: 
Realp, > 0, Realp, = 0, and Real pn < 0. We will not consider the first one, 
because the corresponding X(t) describes an unstable system having an exponen- 
tially increasing response. (Realp, appears in the exponent.) Realp, = 0 means 
a purely oscillatory behavior as t -+ co. We will elaborate on this case in Section 3.1. 
The third and most frequent possibility involves an exponential decreasing factor, 
so that all the moments X, , n 3 0, exist mathematically. 

2.2. Estimates for the Behavior of X(t)fir t -+ 0 

If X(p) can be expanded in the absolutely convergent series for 1 p ( > R of the 
form 

(14) 
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then we can express X(t) in the converging series: 

This theorem is extended rigorously to transforms that can be expanded in series 
of negative exponentials of p, p112, (ap” + bp + c)lj2 (a, b, c > 0) which we 
encounter practically. The expansions obtained can be transformed term by term 
to obtain X(t). We usually need only the leading term as t = 0. 

3. PHYSICAL AND PRACTICAL CONSIDERATIONS 

Let X(p) be the Laplace transform solution of the mathematical model describing 
the experimental setup. There is a good chance that the same problem was solved 
sometime in the past and appears in the vast literature on Laplace transforms, 
For example, a large number of problems in conduction of heat, hydrodynamics, 
diffusion, mechanical systems, electric circuits, and transmission lines are solved 
in Refs. [l-3], usually in a form of infinite series for X(t). We estimate the existence 
of the moments by looking on the leading term in X(t) as t -+ 0 and t ---f co. The 
moments X, are found using (5) and (6) directly on the function x(p). These 
moments will be used together with the experimental moments found using (2) 
to find the physical parameters of the system. 

3.1. Considerations for the Moments X, , n 3 0. 

In the general case where X(t) is not known, we will use the guidelines given in 
Section 2 to assure the existence of the moments. First we check if Z(p) is a single- 
valued function of p and bounded as p --+ co in the left half-plane, i.e., a “regu- 
larity” check. 

If x(p) is a multivalued function, we can use the expansion shown in (11) and/or 
a Table of Transforms for the sole purpose of finding the leading term as t -+ co. 
If x(p) is unbounded in the left half-plane, there is no general way to find the 
leading terms. However, if 

Rp> = e-apt(p), (16) 

where f(p) is a “regular” function of p and f(t) is its inverse transform, then 

X(t) = If(t - aCf(t - a), (17) 
where 

t < a, 
t > a. 

In this case, we can treat W(p) as any “regular” function. 
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All the “regular” functions x(p) can be inverted using the inversion theorem, 
as explained in Section 2.1. As we omit systems with exponentially increasing 
response, we have two types of behavior as t + #CC. X(t) has purely oscillatory 
terms or it has exponentially decreasing factors in all the terms and the system 
is in equilibrium as t + co (see Section 2.1). First we shall treat the second type. 
This behavior is most frequent in finite-sized daped systems if the input is of finite 
duration or constant. Several examples are electric circuits and transmission lines 
where resistance and leakage are not neglected, heat conduction samples, damped 
mechanical and electromagnetic wave systems, hydrodynamic problems in viscous 
liquids, etc. We will find the equilibrium value x of X(t) as t + 00 using (9). If 
x # 0 we will use the function 

x*(t) = X(t) - I (18) 

instead of X(t). X*(t) has the Laplace transform 

x*(P) = X(P) - M4 

and has the limiting value X* = 0 for t + co. In all the physical systems mentioned, 
we know that for either w(p) or x*(p) all the moments X, or Xn*, n > 0, exist 
mathematically, and the leading term as t --t co has a negative exponent. (The 
leading term is f(r) e-at, wheref(t) is a polynomial or an oscillating function. For 
very large values oft, the envelope of X(t) behaves like an exponential.) 

The steady state oscillatory case does not possess the moments as defined in (2). 
Let us define the pseudomoments X,(p = 1): 

x,(~ = 11 = joa d(t) t'n dt. (20) 

Using the same procedure as in Section 1, we get 

X,(p = 1) = lii (-l)n [Y], n > 0. 

As X(t) is purely oscillatory as t -+ co, the moments X&J = 1). n > 0, always 
exist. 

3.2. Considerations for the Moments X-, , n > 0 

The moments X-, , n > 0, are a more complex quantity than X, . We have 
assumed that X(t) is a bounded function. This is correct for almost any physically 
measurable parameter. However, X(t)/t” can be singular at t = 0 and therefore 
the integrals X-, must be tested for convergence at both t = 0 and t -+ co. For 
t + co we apply exactly the same criteria as for X, , because X(t)/r” < X(t) fn 



MOMENTS METHOD FOR LAPLACE TRANSFORM 129 

for t > 1. For t = 0 we find X(0) by the use of Eq. (10). If X(0) = 0 and X-, 
calculated from (6) does not diverge, we will find the leading term as f --f 0 using 
a series expansion as explained in Section 2.2 (see also (15)). Usually, we need only 
the first term, so that if the expansion is possible it is also simple. This procedure 
will assure us of the mathematical existence of X-, . 

One important case can occur while x # 0 (Section 3.1). In this case, we must 
work with x(p) and not x*(p). For a “regular” function, the moment X-r does 
not converge as t -+ co; therefore we must omit this moment before we start the 
approximation at t = 0. 

3.3. Experimental Considerations 

A block diagram of a typical experiment using the moments method is shown in 
Fig. 2. The system is driven by a short duration pulse and its response, measured 
electronically, is analyzed by an on-line computer. The transient recorder is usually 
needed for storage and as an analog-to-digital converter. The final result is a set of 
numbers giving the value of the moments. If an on-line computer is not available, 
the response can be photographed from the oscilloscope or plotted on a regular 
recorder. (For n = 0, the moment is the area under the graph.) 

Transient 
Recorder 

on-line 
Computer 

FIG. 2. Block diagram of the electronic setup for a typical experiment using an on-line 
computer to calculate the moments. The details of the particular experiment are shown schematic- 
ally as “sample.” 

The response function X(t) usually has zero amplitude for times much longer 
than an average time constant of the system (t + co). Nevertheless, for greater 
accuracy in finding X, , especially for n > 1, the contribution of X(f) at large 
values of t is desired. In this case, the measurement of X(t) is done several times on 
different time scales and, if needed, a least-squares fit to an exponential function 
(Ae-““) is used for t + co. This exponential fit will be used only as a correction, 
and only for times I where the fit is better than the experimental error. 

For oscillatory systems, the experimental response is multiplied by the function 
e-t before calculating the pseudomoments, X, (p = 1). Sometimes this function 
is available in the electronic system, so that the computer program for calculating 
the pseudomoments does not have to be changed. 
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4. EXAMPLES 

4.1. An LRC Circuit (Ref [2, Chap. II]) 

We first analyze the simplest possible system to exhibit the mathematical steps: 
a series circuit consisting of inductance L, resistance R, and capacity C. The initial 
current, I,, and charge, Q, , are zero. The Laplace transform of the current, 

f(p) =: pE(p)/(Lp” + Rp + C), iv 
will be found for three possibilities of external E.M.F.: (1) constant, (2) 6 function, 
(3) a step of length T. 

For a constant E.M.F. E(p) = E/p, therefore 

I(P) = E/(Lp2 + RP + C). (23) 

This is a “regular” function, and lim,,, i(t) = lim,,pI(p) = 0, so that it has 
all the moments Z, , n > 0. The response is not oscillatory at t -+ co from physical 
considerations, as can also be found experimentally. At t -+ 0, the limiting value 
is Km,,, pZ(p) = 0. The expansion using (14) is (E/L)(l/pa), therefore 
Z(t) z (E/L) t + 0(t2) at small values oft. Thus, the moments I_, , n > 2, do not 
exist, I_, is the only existing I_, . 

A 6 function E.M.F. E(t) = Es(t) gives E(p) = E. Therefore, 

Z(p) = pEl(Lp2 + RP -1 C). (24) 

This function behaves like i(p) from (23), but for t --t 0, Z(t = 0) = 
lim,,, pi(p) # 0. Therefore the moments I_, , n > 1, do not exist mathematically. 

A step function E.M.F. E(t) = [l - H(t - T)]. Therefore, 

E(P) = EM/P) - (UP) e@‘7, (25) 
f(p) = E(1 - e--pT)/(Lp2 + Rp + C). 

The function [E/(Lp2 + Rp + C)]” -” is treated according to (16) and (17). 
Thus, I(p) has all the moments Z, , n 3 -I, like t(p) of (23). 

4.2. Linear Heat Flow in the Solid 0 < z < I (or Thompson’s Cable) 

The general solution of a transmission line of length 1 shortened at one end and 
measured at a point a distance z from the open end [2, pp. 269; 3, pp. 1 lo] is 

E(z, p) = ,?(O, p) sinh q(l - z)/sinh 41, O<z<l, (26) 
and 

Z(z, p) = E(O, p) cash q(1- z)/(Lp + R) sinh 41, O<z<I, (27) 
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where q2 = (Lp + R)(Cp + G). Here L, C, R, G are the distributed inductance, 
capacity, resistance, an leakage, respectively. Thompson’s cable is defined as a line 
with L = G = 0. In this case, we have the same differential equation as the heat 
flow equation with C = PC’, R = 1/K, E = T, where C’ is the heat capacity, 
p is the density, K is the thermal conductivity, T is the temperature, and I is the heat 
current. We will apply this result to two input conditions: (1) a 6 function input 
of heat I(0, t) = Q s(t), (2) a constant temperature T applied at z = 0. For the 
first case, from (27), we have for z = 0: 

I(O, p) = Q = q T(O, p) cash ql/( l/K) sinh ql. 

Substituting T(O, p) from (28) into (26), we get 

(28) 

where 
T(z, p) = Q sinh q(1- z)/Kq cash ql, 

q2 = (PC’IK)P 

(2% 

T(z, p) is an even function of q; therefore it is single-valued. It is also bounded 
in the left half-plane and therefore it is a “regular function.” As t + co, 
limp+, pT(z, p) = 0. Therefore all the moments T, , n > 0, exist. For small values 
of t, we find lim,,, p T(z, p) = 0 (z # 0), so that we can expand T(z, p) for large 
P (or 4): 

(30) 

The leading term in this expansion for t --f 0 is the first one, 

T(z, t) M --& (p’C’z2/4Kt - e-C’W%)*/4Kt), O<z<l. (31) 

The other terms are smaller, if we do not allow the values z = 0 and z = 1. Using 
(31), we find that all the moments T-, , n Z 0, exist for 0 < z < I. 

We shall use (26) for the case where the input is a constant temperature T at 
2 = 0: 

T(z, p) = (Tlp)(sinh q(1 - z)/sinh ql), (32) 

where q2 = (pC’/K)p. This function is “regular” and Em,,, p T(z, p) = T[(l - 2)/Z]. 
Therefore the new function using (19) 

T*(z, p) = $ sinhq(hl; z) _ “lp; 4 (33) 
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has all the moments Tn*, n > 0. T(z, 0) = lim D+‘x- p T(z. p) = 0 and the behavior 
t-+0& 

= $ [p-Q2 _ e4(PI-zq f e-2n”‘m 

TZ=O 

(34) 

The leading term as t + 0 is 

T(z, t) = T lerfc [(g,“’ g] - erfc [(g)“’ XT-]/. (35) 

As I - 0 we use the approximation, u -+ co 

erfc 24 
p” 1 

w __ 

( 
- - & + ..*). 

a2 .u 

Thus all the moments T-, , II > 2, exist. The moment T-, has to be excluded 
because of the singularity at t -+ co, as explained in Section 3.2. 

To conclude this example, we will show the great advantage of the moments 
method. We will find To and T-, for the transient case, Z(0, t) = Q 6(t). 

To(z) = QU - 4/K (37) 

T-,(z) = $ J: si;hcz;h-/z) a’p, 

where q* = (pc’/K)p. Thus 

(38) 

where A(z, /) is the numerical result of the integral, dependent only on z and 1. 
Therefore, an experiment using a thermometer at the point z giving the time depen- 
dence of the temperature after a a-shaped hear pulse was supplied will give us 
T,(z) and T-,(z). The external heat pulse I(0, t) = Q 8(t) is known, and one can 
therefore find K and pc’, from To and T-, in a single measurement with only one 
thermometer. A complete treatment of this special case was given in Refs. [6, 71. 
The heat capacities of the heater and thermometer, which are always present in 
such an experiment, were taken in account. The solution of the very complicated 
time dependent T(z, t) was avoided, using the moments method. 

Similar examples can be found in other experiments in physics. The complexity 
of the experiment itself is reduced and the analysis with an on-line computer 
enables one to extract physically interesting parameters. 
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6. CONCLUSION 

The applicability of the moments method had been shown to be very large. 
All real-life experiments are done on finite-sized geometries. Usually, this fact is 
regarded as an unwanted complication because of the complex mathematical form 
of X(t). In our method, the opposite is true. The Laplace transform solution X(p) 
of a finite geometry is usually a “regular” function, so that we are immediately 
assured that all the moments X, , n > 0, exist mathematically. In such a case we 
do not have to make any series expansion or other tests. The method can be 
applied easily to damped systems with transient inputs using the moments at 
p = 0, and to oscillatory systems by using p = 1. 

This method has another advantage in an on-line computer experiment. The 
experiment itself gives a response function, and the computer analyzes this result 
for the physical parameters of the sample. We do not need a complicated least- 
squares fit requiring a large memory. 
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